Understanding Artificial Intelligence Diffusion through an AI Capability Maturity Model

Author:

Hansen Hans Fredrik,Lillesund Elise,Mikalef PatrickORCID,Altwaijry Νajwa

Abstract

AbstractThe recent advancements in the field of Artificial Intelligence (AI) have sparked a renewed interest in how organizations can potentially leverage and gain value from these technologies. Despite the considerable hype around AI, recent reports indicate that a very small number of organizations have managed to successfully implement these technologies in their operations. While many early studies and consultancy-based reports point to factors that enable adoption, there is a growing understanding that adoption of AI is rather more of a process of maturity. Building on this more nuanced approach of adoption, this study focuses on the diffusion of AI through a maturity lens. To explore this process, we conducted a two-phased qualitative case study to explore how organizations diffuse AI in their operations. During the first phase, we conducted interviews with AI experts to gain insight into the process of diffusion as well as some of the key challenges faced by organizations. During the second phase, we collected data from three organizations that were at different stages of AI diffusion. Based on the synthesis of the results and a cross-case analysis, we developed a capability maturity model for AI diffusion (AICMM), which was then validated and tested. The results highlight that AI diffusion introduces some common challenges along the path of diffusion as well as some ways to mitigate them. From a research perspective, our results show that there are some core tasks associated with early AI diffusion that gradually evolve as the maturity of projects grows. For professionals, we present tools for identifying the current state of maturity and providing some practical guidelines on how to further implement AI technologies in their operations to generate business value.

Funder

NTNU Norwegian University of Science and Technology

Publisher

Springer Science and Business Media LLC

Reference56 articles.

1. Alsheibani, S., Cheung, Y., & Messom, C. H. (2018). Artificial Intelligence Adoption: AI-readiness at Firm-Level. PACIS, 4(2018), 231–245.

2. Alsheibani, S., Messom, C., Cheung, Y., & Alhosni, M. (2020). Artificial Intelligence Beyond the Hype: Exploring the Organisation Adoption Factors. ACIS 2020 Proceedings. 33. https://aisel.aisnet.org/acis2020/33

3. Amit, R., & Schoemaker, P. J. (1993). Strategic assets and organizational rent. Strategic Management Journal, 14(1), 33–46.

4. Armstrong, C. P., & Sambamurthy, V. (1999). Information technology assimilation in firms: The influence of senior leadership and IT infrastructures. Information Systems Research, 10(4), 304–327.

5. Åström, J., Reim, W., & Parida, V. (2022). Value creation and value capture for AI business model innovation: A three-phase process framework. Review of Managerial Science, 16(7), 2111–2133.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3