The challenges of entering the metaverse: An experiment on the effect of extended reality on workload

Author:

Xi NannanORCID,Chen Juan,Gama Filipe,Riar Marc,Hamari Juho

Abstract

AbstractInformation technologies exist to enable us to either do things we have not done before or do familiar things more efficiently. Metaverse (i.e. extended reality: XR) enables novel forms of engrossing telepresence, but it also may make mundate tasks more effortless. Such technologies increasingly facilitate our work, education, healthcare, consumption and entertainment; however, at the same time, metaverse bring a host of challenges. Therefore, we pose the question whether XR technologies, specifically Augmented Reality (AR) and Virtual Reality (VR), either increase or decrease the difficulties of carrying out everyday tasks. In the current study we conducted a 2 (AR: with vs. without) × 2 (VR: with vs. without) between-subject experiment where participants faced a shopping-related task (including navigating, movement, hand-interaction, information processing, information searching, storing, decision making, and simple calculation) to examine a proposed series of hypotheses. The NASA Task Load Index (NASA-TLX) was used to measure subjective workload when using an XR-mediated information system including six sub-dimensions of frustration, performance, effort, physical, mental, and temporal demand. The findings indicate that AR was significantly associated with overall workload, especially mental demand and effort, while VR had no significant effect on any workload sub-dimensions. There was a significant interaction effect between AR and VR on physical demand, effort, and overall workload. The results imply that the resources and cost of operating XR-mediated realities are different and higher than physical reality.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Information Systems,Theoretical Computer Science,Software

Cited by 213 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3