Emendations to tissue typology in discomycetes

Author:

Hengstmengel JanORCID

Abstract

AbstractThe term “textura oblita”, referring to a tissue type in ascomycetes with apothecial ascomata, has caused much confusion to ascomycologists. Originally it was defined as a long-celled tissue type consisting of thick-walled hyphae with intercellular substance. However, this definition appeared not well, or not at all, applicable to the originally given examples like Phialea starbaeckii. This has resulted in two other definitions which are more or less the opposite of each other, viz. as a thick-walled tissue with gelatinized walls and as a thin-walled tissue embedded in a gelatinous matrix. The main issue is the location of the gelatinous substance in the relevant tissue: in the cell wall, extracellular, or both. Unfortunately all of the three tissues are called “gelatinous tissue”, although the term “gelatinous tissue” according to its definition concerns only tissue with extrahyphal gel. This implies that essential information about the location of the gel is ignored. In effect, all three conceptions of textura oblita are reducible to versions of textura porrecta that differ in the location of the gel. Similarly other tissue types can occur in different versions.The author discusses the postulated mechanisms of gel formation in fungal tissues. These concern disintegration of the outer layer(s) of hyphal walls, disintegration of hyphae, and secretion, here linked to exocytosis. There is supposed to be a correlation between the way of gel formation on the one hand, and the structure of the sporocarp and the cell wall in ascomycetes and basidiomycetes on the other hand.To conclude, an emended tissue typology is provided in which the distinguished versions of the six basic tissue types are arranged according to the shape of their cells, the arrangement of their hyphae, the occurrence of thickened cell walls, and the occurrence of extracellular gel.The species name Cyathicula starbaeckii, comb. nov., is validly published here.

Funder

Leiden University

Publisher

Springer Science and Business Media LLC

Subject

Agricultural and Biological Sciences (miscellaneous),Ecology, Evolution, Behavior and Systematics

Reference74 articles.

1. Albuquerque PC, Nakayasu ES, Rodriques ML, Frases S, Casadevall A, Zancope-Oliveira RM, Almeida IC, Nosanchuk JD (2008) Vesicular transport in Histoplasma capsulatum: an effective mechanism for trans-cell wall transfer of proteins and lipids in ascomycetes. Cell Microbiol 10:1695–1710. https://doi.org/10.1111/j.1462-5822.2008.01160.x

2. Bandoni RJ, Bisalputra AA (1971) Budding and fine structure of Tremella mesenterica haplonts. Can J Bot 49:27–30. https://doi.org/10.1139/b71-005

3. Baral HO (1987) Lugol’s solution/IKI versus Melzer’s reagent: hemiamyloidity, a universal feature of the ascus wall. Mycotaxon 29:399–450

4. Baral HO (2005) In vivo veritas. 3rd edn. Published on DVD

5. Baral HO (2008) Dichotomous key to Lachnellula (worldwide) (Trichoscyphelloideae, Lachnaceae, Helotiales, Ascomycetes), with a synoptic table of characters. https://in-vivo-veritas.de/wp-content/uploads/2015/10/Lachnellula-Baral-20081.pdf

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3