Analysis of the species spectrum of the Diaporthe/Phomopsis complex in European soybean seeds

Author:

Hosseini BehnoushORCID,El-Hasan Abbas,Link Tobias,Voegele Ralf Thomas

Abstract

AbstractPhytopathogenic fungal species of the Diaporthe/Phomopsis complex (DPC) are associated with three highly destructive diseases on soybean: seed decay, pod and stem blight, and stem canker. They are responsible for poor seed quality and significant yield reduction in most soybean-producing areas. Precise identification and classification of DPC species are important in understanding the epidemiology of disease and to develop effective control measures. Although cultural and morphological characteristics of DPC-associated pathogens have been described, establishing a more accurate taxonomic framework seems necessary for a revaluation of the taxonomy and phylogeny of DPC species. In this study, we focused on morphological and molecular analyses of species from DPC-damaged European soybean seeds obtained from several locations throughout Europe. Colony characteristics, conidia dimensions, existence of α- and β-conidia, and formation of perithecia were evaluated in order to assign the isolates to a species morphologically. Phylogenetic relationships were determined based on sequences from beta-tubulin (TUB), translation elongation factor 1-alpha (TEF1), and nuclear ribosomal DNA internal transcribed spacers (ITS). All isolates were tested for pathogenicity on soybean with positive results. In this study, we present updated taxonomic data by combining morphological observations and molecular tools which placed 32 Diaporthe isolates into four DPC species: D. longicolla, D. caulivora, D. eres, and D. novem, which are well-known soybean pathogens.

Funder

Universität Hohenheim

Publisher

Springer Science and Business Media LLC

Subject

Agricultural and Biological Sciences (miscellaneous),Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3