Abstract
Abstract
Based on phylogenetic analyses of the ITS, nuclear large subunit rRNA, mitochondrial small subunit rRNA, and MCM7 genes, species previously treated as Pannaria hispidula and P. isabellina are shown to represent two new Pannariaceae genera, Hispidopannaria and Phormospsora. Each genus forms monophyletic clades, both in multilocus phylogeny and in single gene phylogenies. In the multilocus phylogeny, both genera together formed a monophyletic clade as a sister group to the genus Pannaria, whereas this monophyly was not maintained in single gene phylogenies. Hispidopannaria differs from Pannaria in having large, geotropically arranged, hispid squamules, IKI+ internal ascus structures, and perispores with irregular pulvinate verrucae and apical extensions. The southern South American, TLC-negative species H. hispidula is generitype and is concentrated to trunks in the evergreen Nothofagus forests of south-central Chile. Psoroma dasycladum, a similar endemic species from the Juan Fernández Archipelago, is also transferred to Hispidopannaria. Phormopsora is monospecific and is the only member of Pannariaceae which contains norstictic and connorstictic acids. Its thallus of large, branched squamules with large, foliose cephalodia and its bullate perispores with long-apiculate apical extensions also separate it from Pannaria. Its species, Phormopsora isabellina, has a similar distribution as H. hispidula on the South American mainland, but is more widespread. The position of these two small genera as a sister group to the large and diverse genus Pannaria, indicates a long period of slow evolutionary rate, with the island endemic Hispidopannaria dasyclada as an exception. Reproductive isolation and photobiont specialization are partly suggested to explain their slow evolution and lack of surviving speciation.
Funder
UiT The Arctic University of Norway
Publisher
Springer Science and Business Media LLC
Subject
Agricultural and Biological Sciences (miscellaneous),Ecology, Evolution, Behavior and Systematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献