Novel biologically active pyridine derivatives: Synthesis, structure characterization, in vitro antimicrobial evaluation and structure-activity relationship

Author:

Elsayed Mohamed A.,Elsayed Alshaimaa M.,Sroor Farid M.ORCID

Abstract

AbstractThe rate of microbial resistance has continued to rise significantly as the availability of new antibiotics has declined. A new series of pyridine and thienopyridine derivatives were designed, synthesized and tested as antimicrobial agents. The reaction of 4-bromo acetophenone and vetraldehyde (3,4-dimethoxy benzaldehyde) in ethanol and sodium hydroxide solution afforded the corresponding chalcone which was used as a suitable precursor to prepare a new series of pyridine derivatives. The treatment of the latter chalcone with 2-cyanothioacetamide afforded the corresponding pyridinethione which was used as a precursor to synthesize the targeted thienopyridine derivatives in good to excellent yield by the reaction with 2-chloro-N-arylacetamide derivatives, α-haloketones, methyl iodide or chloroacetonitrile in one or two steps. The structure of the synthesized compounds was confirmed chemically by their preparations with other pathways and their spectral data. The newly synthesized pyridine and thienopyridine derivatives exhibited good to strong antimicrobial activity against microbial strains E. coli, B. mycoides and C. albicans. With maximal antimicrobial activity against B. mycoides (33 mm) and C. albicans (29 mm), respectively, compounds 12a and 15 demonstrated the highest inhibition zone. Compound 12a prevented the growth of E. coli, at MIC level of 0.0195 mg/mL, and B. mycoides and C. albicans at MIC level below than 0.0048 mg/mL, respectively. Additionally, compound 15 prevented the visible growth of E. coli, B. mycoides, and C. albicans at MIC values of >0.0048, 0.0098, and 0.039 mg/mL, respectively. The relation between the chemical structure of the synthesized pyridine and thienopyridine compounds and their antimicrobial properties was discussed in the SAR study.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3