Natural zeolites as host matrices for the development of low-cost and stable thermochemical energy storage materials

Author:

Kouchachvili Lia,Bardy D. A.,Djebbar Reda,Hogg LuVerne E. W.

Abstract

AbstractAdvanced thermal energy storage technologies based on physical adsorption and chemical reactions of thermochemical materials (TCMs) are capable of storing large shares of renewable energy with high energy density. Further research and development is required to improve the performance and reduce the cost of these materials. A promising approach to developing low-cost TCM is to use natural zeolite adsorbents as host matrices in the development of salt-loaded composite TCM. In this study, the thermal properties of various species of low-cost zeolites from natural deposits across Canada were investigated. Two high purity crystal (HPC) zeolites from the Trans Canada (TC-HPC) and Juniper Creek (J-HPC) deposits in British Columbia were determined to have the highest water uptake capacity (0.145 g/g and 0.113 g/g, respectively) and enthalpy of adsorption (408 J/g and 304 J/g, respectively). Despite having approximately half of the water uptake capacity and adsorption enthalpy of the commercially available synthetic zeolite 13X, the cost of thermal energy storage ($CAD/kWhth) of the natural zeolites was determined to be 72–79% lower than that of the synthetic zeolite. Repeated adsorption and desorption experiments demonstrated the hydrothermal stability of the HPC zeolites over multiple charge and discharge cycles. Overall, the experimental results and cost analysis indicate that Canadian HPC zeolites are promising alternatives to synthetic zeolites in the pursuit of low-cost and stable TCM.

Funder

Natural Resources Canada

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3