Influence of the anodization conditions and chemical treatment on the formation of alumina membranes with defined pore diameters

Author:

Dobosz IwonaORCID

Abstract

AbstractPorous anodic aluminum oxide membranes were fabricated via two-step anodization of aluminum in 0.3 M H2C2O4, 0.3 M H2SO4 and 0.17 M H3PO4 solutions. The parameters of the oxide film such as: pore diameter (Dp), interpore distance (Dc), porosity (P) and pore density (ρ) can be completely controlled by the operating conditions of the anodization. Additionally, the pore diameters and pore density can be controlled via a chemical treatment (pore opening/widening process). The effect of anodizing conditions such as the applied voltage, type of electrolyte and purity of the substrate on the rate of porous oxide growth are discussed. The obtained results were compared with the theoretical predictions and data that has been reported in the literature. The influence of the duration of chemical etching on the structural features of the oxide membranes was studied. On the based on qualitative and quantitative FFT analyzes and circularity maps, it was found that the nanostructures of anodized aluminum have the maximum order under certain specified conditions. The presence of alloying elements affects not only the rate of oxide growth but also the morphology of the anodic aluminum oxide. The rate of oxide growth depends on the electrolyte type and temperature. During chemical treatment of the oxide films pore diameter increases with the pore widening time and the highest pore widening was observed in phosphoric acid solution.

Funder

Akademia Górniczo-Hutnicza im. Stanislawa Staszica

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3