Abstract
AbstractThis is an expository paper embarking on the asymptotic behavior of the entries of the inverses of positive definite symmetric Toeplitz matrices as the matrix dimension goes to infinity. We consider the behavior of the entries in neighborhoods of the four corners as well as the density of the distribution of the entries over all of the inverse matrix.
Funder
Technische Universität Chemnitz
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Analysis
Reference24 articles.
1. Böttcher, A.: The constants in the asymptotic formulas by Rambour and Seghier for inverses of Toeplitz matrices. Integral Equ. Oper. Theory 50, 43–55 (2004)
2. Böttcher, A.: The Duduchava-Roch formula. Oper. Theory: Adv. Appl. 258, 1–19 (2017)
3. Böttcher, A., Fukshansky, L., Garcia, S.R., Maharaj, H.: Toeplitz determinants with perturbations in the corners. J. Funct. Anal. 268, 171–193 (2015)
4. Böttcher,A., Silbermann,B.: Introduction to large truncated Toeplitz matrices. Universitext, Springer-Verlag, New York (1999)
5. Böttcher, A., Widom, H.: From Toeplitz eigenvalues through Green’s kernels to higher-order Wirtinger–Sobolev inequalities. Oper. Theor: Adv. Appl. 171, 73–87 (2006)