Voting protocols on the star graph

Author:

Kátai-Urbán Kamilla,Pongrácz AndrásORCID,Szabó Csaba

Abstract

AbstractLet $$G=(V,E)$$ G = ( V , E ) be a finite graph together with an initial assignment $$V\rightarrow \{0,1\}$$ V { 0 , 1 } that represents the opinion of each vertex. Then discordant push voting is a discrete, non-deterministic protocol that alters the opinion of one vertex at a time until a consensus is reached. More precisely, at each round a discordant vertex u (i.e., one that has a neighbor with a different opinion) is chosen uniformly at random, and then we choose a neighbor v with different vote uniformly at random, and force v to change its opinion to that of u. In case of the discordant pull protocol we simply choose a discordant vertex uniformly at random and change its opinion. In this paper, we give asymptotically sharp estimations for the worst expected runtime of the discordant push and pull protocols on the star graph.

Funder

European Social Fund

Nemzeti Kutatási, Fejlesztési és Innovaciós Alap

Magyar Tudományos Akadémia

Emberi Eroforrások Minisztériuma

HUN-REN Alfréd Rényi Institute of Mathematics

Publisher

Springer Science and Business Media LLC

Reference15 articles.

1. Basu, R., Sly, A.: Evolving voter model on dense random graphs. Annal. Appl. Probab. 27(2), 1235–1288 (2017)

2. Carra, D., Cigno, R.L., Russo, A.: On some fundamental properties of p2p push/pull protocols. In Proceedings of the Second International Conference on Communications and Electronics, p. 7 pp (2008)

3. Cooper, C., Dyer, M., Frieze, A., Rivera, N.: Discordant voting processes on finite graphs. In 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016), pp. 2033–2045

4. Cooper, C., Elsasser, R., Ono, H., Radzik, T.: Coalescing random walks and voting on connected graphs. SIAM J. Discret. Math. 27(4), 1748–1758 (2013)

5. Cooper, C., Rivera, N.: The linear voting model. In: 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016), pp. 2021–2032

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3