Convex geometries representable with colors, by ellipses on the plane, and impossible by circles

Author:

Adaricheva KiraORCID,Daisy Evan,Garg Ayush,Ma Grace,Olson Michelle,Raanes Cat,Thompson James

Abstract

AbstractA convex geometry is a closure system satisfying the anti-exchange property. This paper, following the work of Adaricheva and Bolat (Discrete Math 342(N3):726–746, 2019) and the Polymath REU 2020 team (Convex geometries representable by at most 5 circles on the plane. arXiv:2008.13077), continues to investigate representations of convex geometries on a 5-element base set. It introduces several properties: the opposite property, nested triangle property, area Q property, and separation property, of convex geometries of circles on a plane, preventing this representation for numerous convex geometries on a 5-element base set. It also demonstrates that all 672 convex geometries on a 5-element base set have a representation by ellipses, as given in the appendix for those without a known representation by circles, and introduces a method of expanding representation with circles by defining unary predicates, shown as colors.

Publisher

Springer Science and Business Media LLC

Reference18 articles.

1. Adaricheva, K., Agarwal, A., Nevo, N.: Representation of convex geometries of convex dimension 3 by spheres, submitted. arXiv:2308.07384

2. Adaricheva, K., Brubaker, B., Devlin, P., Miller, S.J., Reiner, V., Seceleanu, A., Sheffer, A., Zeytuncu, Y.: When life gives you lemons, make mathematicians. Not. AMS 68, 375–378 (2021)

3. Adaricheva, K., Bolat, M.: Representation of finite convex geometries by circles on the plane. Discrete Math. 342(N3), 726–746 (2019)

4. Adaricheva, K.V., Gorbunov, V.A., Tumanov, V.I.: Join-semidistributive lattices and convex geometries. Adv. Math. 173, 1–49 (2003)

5. Adaricheva, K., Nation, J.B.: Convex geometries. In: Grätzer, G., Wehrung, F. (eds.) Lattice Theory: Special Topics and Applications, vol. 2. Springer, Basel (2016)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Convex geometries representable by at most five circles on the plane;Involve, a Journal of Mathematics;2024-05-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3