Interactive granular computing

Author:

Skowron Andrzej,Jankowski Andrzej,Dutta Soma

Abstract

Abstract Decision support in solving problems related to complex systems requires relevant computation models for the agents as well as methods for reasoning on properties of computations performed by agents. Agents are performing computations on complex objects [e.g., (behavioral) patterns, classifiers, clusters, structural objects, sets of rules, aggregation operations, (approximate) reasoning schemes]. In Granular Computing (GrC), all such constructed and/or induced objects are called granules. To model interactive computations performed by agents, crucial for the complex systems, we extend the existing GrC approach to Interactive Granular Computing (IGrC) approach by introducing complex granules (c-granules or granules, for short). Many advanced tasks, concerning complex systems, may be classified as control tasks performed by agents aiming at achieving the high-quality computational trajectories relative to the considered quality measures defined over the trajectories. Here, new challenges are to develop strategies to control, predict, and bound the behavior of the system. We propose to investigate these challenges using the IGrC framework. The reasoning, which aims at controlling of computations, to achieve the required targets, is called an adaptive judgement. This reasoning deals with granules and computations over them. Adaptive judgement is more than a mixture of reasoning based on deduction, induction and abduction. Due to the uncertainty the agents generally cannot predict exactly the results of actions (or plans). Moreover, the approximations of the complex vague concepts initiating actions (or plans) are drifting with time. Hence, adaptive strategies for evolving approximations of concepts are needed. In particular, the adaptive judgement is very much needed in the efficiency management of granular computations, carried out by agents, for risk assessment, risk treatment, and cost/benefit analysis. In the paper, we emphasize the role of the rough set-based methods in IGrC. The discussed approach is a step towards realization of the Wisdom Technology (WisTech) program, and is developed over years, based on the work experience on different real-life projects.

Publisher

Springer Science and Business Media LLC

Cited by 147 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3