A generalized fuzzy k-nearest neighbor regression model based on Minkowski distance

Author:

Mailagaha Kumbure MahindaORCID,Luukka PasiORCID

Abstract

AbstractThe fuzzy k-nearest neighbor (FKNN) algorithm, one of the most well-known and effective supervised learning techniques, has often been used in data classification problems but rarely in regression settings. This paper introduces a new, more general fuzzy k-nearest neighbor regression model. Generalization is based on the usage of the Minkowski distance instead of the usual Euclidean distance. The Euclidean distance is often not the optimal choice for practical problems, and better results can be obtained by generalizing this. Using the Minkowski distance allows the proposed method to obtain more reasonable nearest neighbors to the target sample. Another key advantage of this method is that the nearest neighbors are weighted by fuzzy weights based on their similarity to the target sample, leading to the most accurate prediction through a weighted average. The performance of the proposed method is tested with eight real-world datasets from different fields and benchmarked to the k-nearest neighbor and three other state-of-the-art regression methods. The Manhattan distance- and Euclidean distance-based FKNNreg methods are also implemented, and the results are compared. The empirical results show that the proposed Minkowski distance-based fuzzy regression (Md-FKNNreg) method outperforms the benchmarks and can be a good algorithm for regression problems. In particular, the Md-FKNNreg model gave the significantly lowest overall average root mean square error (0.0769) of all other regression methods used. As a special case of the Minkowski distance, the Manhattan distance yielded the optimal conditions for Md-FKNNreg and achieved the best performance for most of the datasets.

Funder

LUT University (previously Lappeenranta University of Technology

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Science Applications,Information Systems

Reference70 articles.

1. Adege AB, Yayeh Y, Berie G, Lin H, Yen L, Li YR (2018) Indoor localization using k-nearest neighbor and artificial neural network back propagation algorithms. In: 27th Wireless and Optical Communication Conference (WOCC), pp 1–2

2. Aggarwal CC, Hinneburg A, Keim DA (2001) On the surprising behavior of distance metrics in high dimensional space. Database Theory ICDT 2001. Springer, Berlin, pp 420–434

3. Alcala-Fdez J, Fernandez A, Luengo J, Derrac J, García S, Sánchez L, Herrera F (2011) Keel data-mining software tool: data set repository, integration of algorithms and experimental analysis framework. J Mult-Valued Log Soft Comput 17:255–287, https://sci2s.ugr.es/keel/datasets.php

4. Ali S, Smith-Miles KA (2006) A meta-learning approach to automatic kernel selection for support vector machines. Neurocomputing 70:173–186

5. Arif M, Akram MU, Minhas FA (2010) Pruned fuzzy k-nearest neighbor classifier for beat classification. J Biomed Sci Eng 3:380–3899

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3