Load Unbalance Detection Improvement in Three-Phase Induction Machine Based on Current Space Vector Analysis
Author:
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering
Link
http://link.springer.com/content/pdf/10.1007/s42835-020-00403-y.pdf
Reference38 articles.
1. Li G, Tang G, Wang H, Wang Y (2019) Blind source separation of composite bearing vibration signals with low-rank and sparse decomposition. Measurement 145:323–334
2. Bouneb D, Bahi T, Merabet H (2018) Vibration for detection and diagnosis bearing faults using adaptive neuro fuzzy inference system. J Electr Syst 14(1):95–104
3. Delgado-Arredondo PA et al (2016) Methodology for fault detection in induction motors via sound and vibration signals. Mech Syst Signal Process. https://doi.org/10.1016/j.ymssp.2016.06.032
4. Gangsar P, Tiwari R (2017) Comparative investigation of vibration and current monitoring for prediction of mechanical and electrical faults in induction motor based on multiclass-support vector machine algorithms. Mech Syst Signal Process 94:464–481
5. Fournier E et al (2015) Current-based detection of mechanical unbalance in an induction machine using Spectral Kurtosis with reference. IEEE Trans Ind Electron 62(3):1879–1887
Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Exploring the effects of overvoltage unbalances on three phase induction motors: Insights from motor current spectral analysis and discrete wavelet transform energy assessment;Computers and Electrical Engineering;2024-07
2. Neural Network and L-kurtosis for Diagnosing Rolling Element Bearing Faults;Journal of Electrical Engineering & Technology;2024-03-19
3. Analysis on Noise Source of Claw Pole Machine in Duplex Three-Phase and Belt-Driven System;Journal of Electrical Engineering & Technology;2022-07-28
4. Diagnosis of Supply Voltage Imbalance Using WPD Energy Enhanced by Current Space Vector (CSV);2022 19th International Multi-Conference on Systems, Signals & Devices (SSD);2022-05-06
5. Towards soft real-time fault diagnosis for edge devices in industrial IoT using deep domain adaptation training strategy;Journal of Parallel and Distributed Computing;2022-02
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3