Profit Based Unit Commitment of Thermal Units with Renewable Energy and Electric Vehicles in Power Market

Author:

Vasiyullah S. F. SyedORCID,Bharathidasan S. G.

Abstract

AbstractIn restructured power system, Generation Companies (GENCOs) has an opportunity to sell power and reserve in power market to earn profit by market clearing process. Defining unit commitment problem in a competitive environment to maximize the profit of GENCOs while satisfying all the network constraints is called Profit Based Unit Commitment problem (PBUC). The main contribution of this paper is modeling and inclusion of Market Clearing Price (MCP) in PBUC problem. In Day market, MCP is determined by market operator which provides maximum social welfare for both GENCOs and Consumers.On other hand this paper proposes a novel combination of solution methodology: Improved Pre-prepared power demand (IPPD) table and Analytical Hierarchy method (AHP) for solving the optimal day ahead scheduling problem as an another contribution. In this method, the status of unit commitment is obtained by IPPD table and AHP provides an optimal solution to PBUC problem. Minimizing total operating cost of thermal units to provide maximum profit to GENCOs is called an optimal day ahead scheduling problem. Also it will be more realistic to redefine this problem to include multiple distributed resources and Electric vehicles with energy storage. Because of any uncertainties or fluctuation of renewable energy resources (RESs), Electric vehicles (EV) can be used as load, energy sources and energy storage. This would reduce cost, emission and to improve system power quality and reliability. So output power of solar (PS), wind output power (PW) and Electric Vehicles power (PEV) are modeled and included into day ahead scheduling problem.The proposed methodology is tested on a standard thermal unit system with or without RESs and EVs. Cost and emission reduction in a smart grid by maximum utilization of EVs and RESs are presented in this literature. It is indicated that the proposed method provides maximum profit to GENCOs when compared to other methodologies such as Memory Management Algorithm, Improved Particle Swarm Optimization (PSO), Muller method, Gravitational search algorithm etc.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering

Reference45 articles.

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3