Faulted Section Identification and Fault Location in Power Network Based on Histogram Analysis of Three-phase Current and Voltage Modulated
Author:
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering
Link
https://link.springer.com/content/pdf/10.1007/s42835-022-01079-2.pdf
Reference25 articles.
1. Dashtdar M, Hosseinimoghadam SMS, Dashtdar M (2021) Fault location in the distribution network based on power system status estimation with smart meters data. Int J Emerg Electric Power Syst. https://doi.org/10.1515/ijeeps-2020-0126
2. DMasoud, RDashti, and HR Shaker (2018) “Distribution network fault section identification and fault location using an artificial neural network. In: 2018 5th International Conference on Electrical and Electronic Engineering (ICEEE). IEEE
3. Dashtdar M (2018) Fault location in distribution network based on fault current analysis using artificial neural network. Mapta J Electric Comput Eng (MJECE) 1(2):18–32
4. Dashti R, Sadeh J (2014) Fault section estimation in power distribution network using impedance-based fault distance calculation and frequency spectrum analysis. IET Gener Transm Distrib 8(8):1406–1417
5. Lopes FV, Kusel BF, Silva KM (2016) Traveling wave-based fault location on half-wavelength transmission line. IEEE Latin Am Trans 14:248
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Application of soft computing algorithms for hybrid modular multilevel inverters;Measurement: Sensors;2024-02
2. Learning search algorithm to solve real-world optimization problems and parameter extract of photovoltaic models;Journal of Computational Electronics;2023-10-09
3. Harnessing Solar Power: A Review of Photovoltaic Innovations, Solar Thermal Systems, and the Dawn of Energy Storage Solutions;Energies;2023-09-06
4. Weightless Neural Network-Based Detection and Diagnosis of Visual Faults in Photovoltaic Modules;Energies;2023-08-05
5. Fault Location in Distribution Network by Solving the Optimization Problem Based on Power System Status Estimation Using the PMU;Machines;2023-01-13
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3