State-of-Charge Estimation of Lithium-ion Batteries Using LSTM Deep Learning Method
Author:
Funder
National Research Foundation of Korea
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering
Link
https://link.springer.com/content/pdf/10.1007/s42835-021-00954-8.pdf
Reference33 articles.
1. Yang F, Wang D, Zhao Y, Tsui K-L, Bae SJ (2018) A study of the relationship between coulombic efficiency and capacity degradation of commercial lithium-ion batteries. Energy 145:486–495
2. Hannan MA, Lipu MH, Hussain A, Mohamed A (2017) A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: challenges and recommendations. Renew Sustain Energy Rev 78:834–854
3. Lu L, Han X, Li J, Hua J, Ouyang M (2013) A review on the key issues for lithium-ion battery management in electric vehicles. J Power Sources 226:272–288
4. Ng KS, Moo C-S, Chen Y-P, Hsieh Y-C (2009) Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries. Appl Energy 86(9):1506–1511
5. He H, Zhang X, Xiong R, Xu Y, Guo H (2012) Online model-based estimation of state-of-charge and open-circuit voltage of lithium-ion batteries in electric vehicles. Energy 39(1):310–318
Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A novel sequential estimation framework for battery state of health and remaining useful life based on sparse and limited data;Journal of Energy Storage;2024-10
2. Equalizing data lengths across temperatures to enhance deep learning training for state of charge prediction;Journal of Energy Storage;2024-10
3. State of charge estimation for lithium-ion batteries based on gate recurrent unit and unscented Kalman filtering;Ionics;2024-09-10
4. Small signal analysis and dynamic modeling of a battery energy storage system in a DC microgrid;International Journal of Electrical Power & Energy Systems;2024-09
5. A Study of Electric Bicycle Lithium Battery Charging Monitoring Using CNN and BiLSTM Networks Model with NILM Method;Electronics;2024-08-21
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3