Abstract
AbstractThis paper presents some novel methods to estimate a vessel’s number of shafts, course, speed and classify it using the underwater acoustic noise it generates. A classification framework as well as a set of reference parameters for comparison are put forth. Identifying marine traffic in surroundings is an important task for vessels in an open sea. Vessels in vicinity can be identified using their signatures. One of the typical signatures emitted by a vessel is its acoustic measurements. The raw sonar data consisting of the acoustic signatures is generally observed manually by sonar operators for suggesting class of query vessel. The valuable information that can be extracted from the recorded acoustic signature includes shaft revolutions per minute (SRPM), number of blades (NOB), number of shafts, course and speed etc. Expert sonar operators use their empirical knowledge to estimate a vessel’s SRPM and NOB. Based on this information vessel classification is performed. Empirical knowledge comes with experience, and the manual process is prone to human error. To make the process systematic, calculation of the parameters of the received acoustic samples can be visually analyzed using Detection of Envelope Modulation on Noise (DEMON) spectra. Reported research mostly focuses on SRPM and NOB. Parameters such as number of shafts and vessel course and speed can effectively aid the vessel classification process. This paper makes three novel contributions in this area. Firstly, some novel DEMON spectra analysis techniques are proposed to estimate a water vessel’s number of shafts, speed, and relative course. Secondly, this paper presents a classification framework that uses the features extracted from DEMON spectra and compares them with a reference set. Thirdly, a novel set of reference parameters are provided that aid classification into categories of large merchant ship type 1, large merchant ship type 2, large merchant ship type 3, medium merchant ship, oiler, car carrier, cruise ship, fishing boat and fishing trawler. The proposed analysis and classification techniques were assessed through trials with 877 real acoustic signatures recorded under varying conditions of ship’s speed and sea state. The classification trials revealed a high accuracy of 94.7%.
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering
Reference40 articles.
1. Tan L, Jiang J (2018) Digital signal processing: fundamentals and applications. Academic Press
2. Gao W, Darvishan A, Toghani M, Mohammadi M, Abedinia O, Ghadimi N (2019) Different states of multi-block based forecast engine for price and load prediction. Int J Electr Power Energy Syst 104:423–435
3. Saeedi M, Moradi M, Hosseini M, Emamifar A, Ghadimi N (2019) Robust optimization based optimal chiller loading under cooling demand uncertainty. Appl Therm Eng 148:1081–1091
4. Khodaei H, Hajiali M, Darvishan A, Sepehr M, Ghadimi N (2018) Fuzzy-based heat and power hub models for cost-emission operation of an industrial consumer using compromise programming. Appl Therm Eng 137:395–405
5. Parhi, K. K., & Nishitami, T. (Eds.). (2018). Digital Signal processing for multimedia systems. CRC press.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Masking Modelling for Underwater Acoustic Target Recognition with Self-supervised Learning;2023 5th International Conference on Frontiers Technology of Information and Computer (ICFTIC);2023-11-17
2. Histogram Layer Time Delay Neural Networks for Passive Sonar Classification;2023 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA);2023-10-22
3. Target Classification With Overlapping Window Integration Using Wigner Ville Transform;2023 31st Signal Processing and Communications Applications Conference (SIU);2023-07-05