Improved models for operation modes of complex compressor stations

Author:

Hiller BenjaminORCID,Saitenmacher René,Walther Tom

Abstract

AbstractWe study combinatorial structures in large-scale mixed-integer (nonlinear) programming problems arising in gas network optimization. We propose a preprocessing strategy exploiting the observation that a large part of the combinatorial complexity arises in certain subnetworks. Our approach analyzes these subnetworks and the combinatorial structure of the flows within these subnetworks in order to provide alternative models with a stronger combinatorial structure that can be exploited by off-the-shelve solvers. In particular, we consider the modeling of operation modes for complex compressor stations (i.e., ones with several in- or outlets) in gas networks. We propose a refined model that allows to precompute tighter bounds for each operation mode and a number of model variants based on the refined model exploiting these tighter bounds. We provide a procedure to obtain the refined model from the input data for the original model. This procedure is based on a nontrivial reduction of the graph representing the gas flow through the compressor station in an operation mode. We evaluate our model variants on reference benchmark data, showing that they reduce the average running time between 10% for easy instances and 46% for hard instances. Moreover, for three of four considered networks, the average number of search tree nodes is at least halved, showing the effectivity of our model variants to guide the solver’s search.

Funder

Deutsche Forschungsgemeinschaft

Bundesministerium für Bildung und Forschung

European Cooperation in Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Management Science and Operations Research,General Mathematics,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3