Abstract
AbstractThe proof of convergence of adaptive discretization-based algorithms for semi-infinite programs (SIPs) usually relies on compact host sets for the upper- and lower-level variables. This assumption is violated in some applications, and we show that indeed convergence problems can arise when discretization-based algorithms are applied to SIPs with unbounded variables. To mitigate these convergence problems, we first examine the underlying assumptions of adaptive discretization-based algorithms. We do this paradigmatically using the lower-bounding procedure of Mitsos [Optimization 60(10–11):1291–1308, 2011], which uses the algorithm proposed by Blankenship and Falk [J Optim Theory Appl 19(2):261–281, 1976]. It is noteworthy that the considered procedure and assumptions are essentially the same in the broad class of adaptive discretization-based algorithms. We give sharper, slightly relaxed, assumptions with which we achieve the same convergence guarantees. We show that the convergence guarantees also hold for certain SIPs with unbounded variables based on these sharpened assumptions. However, these sharpened assumptions may be difficult to prove a priori. For these cases, we propose additional, stricter, assumptions which might be easier to prove and which imply the sharpened assumptions. Using these additional assumptions, we present numerical case studies with unbounded variables. Finally, we review which applications are tractable with the proposed additional assumptions.
Publisher
Springer Science and Business Media LLC
Subject
Management Science and Operations Research,General Mathematics,Software
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献