An SDP-based approach for computing the stability number of a graph

Author:

Gaar ElisabethORCID,Siebenhofer MelanieORCID,Wiegele AngelikaORCID

Abstract

AbstractFinding the stability number of a graph, i.e., the maximum number of vertices of which no two are adjacent, is a well known NP-hard combinatorial optimization problem. Since this problem has several applications in real life, there is need to find efficient algorithms to solve this problem. Recently, Gaar and Rendl enhanced semidefinite programming approaches to tighten the upper bound given by the Lovász theta function. This is done by carefully selecting some so-called exact subgraph constraints (ESC) and adding them to the semidefinite program of computing the Lovász theta function. First, we provide two new relaxations that allow to compute the bounds faster without substantial loss of the quality of the bounds. One of these two relaxations is based on including violated facets of the polytope representing the ESCs, the other one adds separating hyperplanes for that polytope. Furthermore, we implement a branch and bound (B&B) algorithm using these tightened relaxations in our bounding routine. We compare the efficiency of our B&B algorithm using the different upper bounds. It turns out that already the bounds of Gaar and Rendl drastically reduce the number of nodes to be explored in the B&B tree as compared to the Lovász theta bound. However, this comes with a high computational cost. Our new relaxations improve the run time of the overall B&B algorithm, while keeping the number of nodes in the B&B tree small.

Funder

Austrian Science Fund

Publisher

Springer Science and Business Media LLC

Subject

Management Science and Operations Research,General Mathematics,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Large Independent Sets in Recursive Markov Random Graphs;Mathematics of Operations Research;2024-07-12

2. Strong SDP based bounds on the cutwidth of a graph;Computers & Operations Research;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3