On the rectangular knapsack problem

Author:

Bökler FritzORCID,Chimani MarkusORCID,Wagner Mirko H.ORCID

Abstract

AbstractA recent paper by Schulze et al. (Math Methods Oper Res 92(1):107–132, 2020) presented the Rectangular Knapsack Problem (Rkp) as a crucial subproblem in the study on the Cardinality-constrained Bi-objective Knapsack Problem (Cbkp). To this end, they started an investigation into its complexity and approximability. The key results are an -hardness proof for a more general scenario than Rkp, and a 4.5-approximation for Rkp, raising the question of improvements for either result. In this note we settle both questions conclusively: we show that (a) Rkp is indeed -hard in the considered setting (and even in more restricted settings), and (b) there exists both a pseudopolynomial algorithm and a fully-polynomial time approximation scheme (i.e., efficient approximability within any desired ratio $$\alpha >1$$ α > 1 ) for Rkp.

Funder

Universität Osnabrück

Publisher

Springer Science and Business Media LLC

Subject

Management Science and Operations Research,General Mathematics,Software

Reference13 articles.

1. Erlebach T, Kellerer H, Pferschy U (2002) Approximating multiobjective knapsack problems. Manag Sci 48(12):1603–1612

2. Gallo G, Hammer P, Simeone B (1980) Quadratic knapsack problems. In: Padberg M (ed) Combinatorial optimization, mathematical programming studies, vol 12. Springer, Berlin

3. Garey MR, Johnson DS (1979) Computers and intractability; a guide to the theory of NP-completeness. Series of books in the mathematical sciences. W. H. Freeman & Co, New York

4. Kellerer H, Strusevich VA (2010) Fully polynomial approximation schemes for a symmetric quadratic knapsack problem and its scheduling applications. Algorithmica 57(4):769–795

5. Nemhauser GL, Ullmann Z (1969) Discrete dynamic programming and capital allocation. Manag Sci 15(9):494–505

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3