Using scalarizations for the approximation of multiobjective optimization problems: towards a general theory

Author:

Helfrich StephanORCID,Herzel Arne,Ruzika Stefan,Thielen Clemens

Abstract

AbstractWe study the approximation of general multiobjective optimization problems with the help of scalarizations. Existing results state that multiobjective minimization problems can be approximated well by norm-based scalarizations. However, for multiobjective maximization problems, only impossibility results are known so far. Countering this, we show that all multiobjective optimization problems can, in principle, be approximated equally well by scalarizations. In this context, we introduce a transformation theory for scalarizations that establishes the following: Suppose there exists a scalarization that yields an approximation of a certain quality for arbitrary instances of multiobjective optimization problems with a given decomposition specifying which objective functions are to be minimized/maximized. Then, for each other decomposition, our transformation yields another scalarization that yields the same approximation quality for arbitrary instances of problems with this other decomposition. In this sense, the existing results about the approximation via scalarizations for minimization problems carry over to any other objective decomposition—in particular, to maximization problems—when suitably adapting the employed scalarization. We further provide necessary and sufficient conditions on a scalarization such that its optimal solutions achieve a constant approximation quality. We give an upper bound on the best achievable approximation quality that applies to general scalarizations and is tight for the majority of norm-based scalarizations applied in the context of multiobjective optimization. As a consequence, none of these norm-based scalarizations can induce approximation sets for optimization problems with maximization objectives, which unifies and generalizes the existing impossibility results concerning the approximation of maximization problems.

Funder

Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau

Publisher

Springer Science and Business Media LLC

Subject

Management Science and Operations Research,General Mathematics,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3