A novel algorithm for semi-automatic segmentation of plant leaf disease symptoms using digital image processing
Author:
Funder
Fundação de Amparo à Pesquisa do Estado de São Paulo
Empresa Brasileira de Pesquisa Agropecuária
Publisher
Springer Science and Business Media LLC
Link
http://link.springer.com/content/pdf/10.1007/s40858-016-0090-8.pdf
Reference28 articles.
1. Barbedo JGA (2014) An automatic method to detect and measure leaf disease symptoms using digital image processing. Plant Dis 98:1709–1716
2. Bauriegel E, Giebel A, Geyer M, Schmidt U, Herppich WB (2011) Early detection of Fusarium infection in wheat using hyper-spectral imaging. Comput Electron Agric 75:304–312
3. Bock CH, Parker PE, Cook AZ, Gottwald TR (2008) Visual rating and the use of image analysis for assessing different symptoms of citrus canker on grapefruit leaves. Plant Dis 92:530–541
4. Bock CH, Parker PE, Cook AZ, Gottwald TR (2009) Automated image analysis of the severity of foliar citrus canker symptoms. Plant Dis 93:660–665
5. Bock CH, Poole G, Parker PE, Gottwald TR (2010) Plant disease severity estimated visually, by digital photography and image analysis, and by hyperspectral imaging. Crit Rev Plant Sci 29:59–107
Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Classification of infection grade for anthracnose in mango leaves under complex background based on CBAM-DBIRNet;Expert Systems with Applications;2024-09
2. Tomato Leaf Disease Classification Based on Feature Enhancement and SDE-ResNet50;2024-05-13
3. A severity estimation method for lightweight cucumber leaf disease based on DM-BiSeNet;Information Processing in Agriculture;2024-03
4. Detection and Analysis of Cassava Plant Disease using Hybrid Deep Neural Networks;2024 2nd International Conference on Intelligent Data Communication Technologies and Internet of Things (IDCIoT);2024-01-04
5. An Exploratory Analysis of Machine Intelligence-enabled Plant Diseases Assessment;Microorganisms for Sustainability;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3