Abstract
AbstractThe uncontrolled release of waste diclofenac with low biodegradability is considered to be a potential threat for the environment and creatures. To find effective solution for this issue, this study reports the adsorption performance of diclofenac sodium salt (DCF) by using activated carbon (EHAC) obtained from einkorn (Triticum monococcum L.) husk in aqueous solution under various circumstances. It was found that DCF adsorption on EHAC was highly solution pH dependent, and DCF adsorption by EHAC decreased with increasing adsorption temperature. Equilibrium data showed that fitted isotherm model with the experiment results of DCF adsorption on EHAC followed the order of Langmuir > Temkin > Freundlich > Dubinin-Radushkevich. Adsorption capacity of EHAC for DCF adsorption in aqueous solution was calculated to be 147.06 mg/g at 25 °C. The adsorption kinetic of DCF adsorption on EHAC was determined to obey the pseudo-second-order kinetic model. By utilizing FTIR and pH data obtained from DCF adsorption on EHAC, DCF adsorption mechanisms with some interactions such as π-π stacking, electrostatic interactions, and hydrogen bonding were suggested at diverse pH values. Additionally, intraparticle diffusion model was applied to kinetic results to further recognize the kinetic mechanism of DCF adsorption on EHAC. Furthermore, thermodynamic parameters for DCF adsorption on EHAC were calculated and evaluated, in which DCF adsorption process by EHAC was determined to be exothermic, spontaneous, and feasible.
Publisher
Springer Science and Business Media LLC