Low cross-linked terpenes-based porous polymers with reduced content of divinylbenzene: synthesis, physicochemical properties and sorption abilities

Author:

Sobiesiak M.ORCID,Banaszek P.

Abstract

AbstractThe low cross-linked porous polymers were prepared using terpene compounds (citral, limonene and pinene) and divinylbenzene with a suspension method. The prepared materials were characterized by: ATR-FTIR, low temperature nitrogen adsorption–desorption, TGA, swelling ratio and solid phase extraction (SPE) experiments. ATR-FTIR verified the chemical structures of the polymers. All the materials had developed internal structure with SBET in the range of 45–190 m2/g and high thermal stability. Sorption properties of the terpene-based polymers were tested for phenolic compounds (phenol, 2-chlorophenol, 2,4-dichlorophenol and 2,4,6-trichlorophenol) and popular non-steroidal anti-inflammatory drugs (aspirin, paracetamol and ibuprofen) and an antibiotic (ampicillin) with a dynamic solid phase extraction (SPE) method. The recoveries of 2,4-dichlorophenol and 2,4,6-trichlorophenol remained at a level 80–100% for all new materials even for 10–13 concentration cycles. Very high recoveries (70–100%) were also obtained for ibuprofen and aspirin from the citral- and limonene-based polymers using one-component solutions. However, when using ternary component solutions, the maximum recoveries of ibuprofen reached 70%. Paracetamol recoveries did not exceed 20%, while these for ampicillin ranged from 40 to 80%. The performed studies have proven that the process is affected by both chemical nature of adsorbents and adsorbates. Especially in the case of multicomponent solutions, the acid—base balance of solutes in the solution and on the polymer—solution interface should be taken into account as an important factor determining obtained recoveries.

Publisher

Springer Science and Business Media LLC

Subject

Surfaces and Interfaces,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3