Measurement and interpretation of unary supercritical gas adsorption isotherms in micro-mesoporous solids

Author:

Pini RonnyORCID,Ansari Humera,Hwang Junyoung

Abstract

AbstractGas adsorption at high pressures in porous solids is commonly quantified in terms of the excess amount adsorbed. Despite the wide spectrum of adsorbent morphologies available, the analysis of excess adsorption isotherms has mostly focused on microporous materials and the role of mesoporosity remains largely unexplored. Here, we present supercritical CO2 adsorption isotherms measured at $$T=308$$ T = 308  K in the pressure range $$p=0.02{-}21$$ p = 0.02 - 21  MPa on three adsorbents with distinct fractions of microporosity, $$\phi_2$$ ϕ 2 , namely a microporous metal-organic framework ($$\phi_2=70$$ ϕ 2 = 70 %), a micro-mesoporous zeolite ($$\phi_2=38$$ ϕ 2 = 38 %) and a mesoporous carbon ($$\phi_2<0.1$$ ϕ 2 < 0.1 %). The results are compared systematically in terms of excess and net adsorption relative to two distinct reference states–the space filled with gas in the presence/absence of adsorbent–that are defined from two separate experiments using helium as the probing gas. We discuss the inherent difficulties in extracting from the supercritical adsorption isotherms quantitative information on the properties of the adsorbed phase (its density or volume), because of the nonuniform distribution of the latter within and across the different classes of pore sizes. Yet, the data clearly reveal pore-size dependent adsorption behaviour, which can be used to identify characteristic types of isotherm and to complement the information obtained using the more traditional textural analysis by physisorption.

Publisher

Springer Science and Business Media LLC

Subject

Surfaces and Interfaces,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3