Decoding the Cauzin Softstrip: a case study in extracting information from old media

Author:

Reimsbach Michael,Aycock John

Abstract

AbstractHaving content in an archive is of limited value if it cannot be read and used. As a case study of extricating information from obsolete media, making it readable once again through deep learning techniques, we examine the Cauzin Softstrip: one of the first two-dimensional bar codes, released in 1985 by Cauzin Systems, which could be used for encoding all manner of digital data. Softstrips occupy a curious middle ground, as they were both physical and digital. The bar codes were printed on paper, and in that sense are no different in an archival way than any printed material. Softstrips can be found in old computer magazines, computer books, and booklets of software Cauzin produced. However, managing the digital nature of these physical artifacts falls within the scope of digital curation. To make the information on them readable and useful, the digital information needs to be extracted, which originally would have occurred using a physical Cauzin Softstrip reader. Obtaining a working Softstrip reader is already extremely difficult and will most likely be impossible in the coming years. In order to extract the encoded data, we created a digital Softstrip reader, making Softstrip data accessible without needing a physical reader. Our decoding strategy is able to decode over 91% of the 1229 Softstrips in our Softstrip corpus; this rises to 99% if we only consider Softstrip images produced under controlled conditions. Furthermore, we later acquired another set of 117 Softstrips and we were able to decode nearly 95% of them with no adjustments to the decoder. These excellent results underscore the fact that technology like deep learning is readily accessible to non-experts; we obtained these results using a convolutional neural network, even though neither of the authors are expert in the area.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,History

Reference35 articles.

1. Apple Computer, Inc (1979) The Applesoft tutorial

2. Apple II Scans (n.d.) https://www.apple2scans.net/, offline as of 3 November 2019 but available via the Internet Archive’s Wayback Machine: https://web.archive.org/web/20190412161821/https://www.apple2scans.net/

3. Barnett MP, Barnett SJ (1986) Animated algorithms: a self-teaching course in data structures and fundamental algorithms. McGraw-Hill, New York

4. Baskin C (1987) Reviewer’s notebook. BYTE Small Syst J 12(5):207

5. Brass RL, Glaberson J, Mason RW, L’Heureux III AJ, Santulli S, Roth GT, Frega J, Imiolek HS (1987) Optical reader for printed bit-encoded data and method of reading same. US Patent 4,692,603

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3