Design, Manufacturing, and Numerical Characterization of Hybrid Fiber Reinforced Polymer under Dynamic Loads

Author:

Bruno M.,Esposito L.,Papa I.,Viscusi A.

Abstract

AbstractIn the present work, the response of composite hybrid laminates made of carbon and glass fibers in different stacking configurations was tested under low-velocity impact loads. Experimental drop impact tests were conducted on three different stacking sequences and three rising impact energy levels. The results from the tests were assumed for the development and validation of a numerical impact model reproducing for each stacking sequence and all the impact energy levels, the laminates impact response. The validated model investigated the occurred damage mechanisms, their distribution in the panel thickness and their extension on the plane of the laminate. Depending on the stacking sequence and the impact energy level, the energy absorption capacity was related to the dominant damage mechanism. The percentage contribution of interlaminar and intralaminar damages was presented and conclusions were drawn about the influence of stacking sequences on energy absorption and damage characteristics.

Funder

Università degli Studi di Napoli Federico II

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3