Influence of Vacuum Support on the Fatigue Life of AlSi9Cu3(Fe) Aluminum Alloy Die Castings

Author:

Szalva PéterORCID,Orbulov Imre Norbert

Abstract

AbstractHigh-pressure die casting (HPDC) is a near-net-shape process that produces high quality castings with narrow dimensional tolerances. The HPDC castings are being increasingly used due to good flexibility and high productivity, especially for the automotive industry. Depending on the location of the cast components, there are ever more complex geometries and increasing strength requirements that can be achieved by the application of vacuum-assisted die casting (VPDC). The most specific features of the HPDC process are the rapid mold filling, high cooling rate and intensification pressure. As a consequence of these highlighted features, the process generally leads to the formation of casting defects, such as gas porosity, shrinkage, and entrapped oxide films. However, the VPDC casting process is capable to significantly reduce the amount of these casting defects. The aim of this work is to compare the HPDC and VPDC castings’ high-cycle fatigue behavior and to describe how the casting defects affect the fatigue failure. Before the fatigue tests, the samples were investigated with non-destructive (NDT) materials testing methods such as hydrostatic weighing, x-ray, and computer tomography (CT) to characterize the gas pore and shrinkage pore populations of the material. The AlSi9Cu3(Fe) aluminum alloy castings have been subjected to constant amplitude load by uniaxial fatigue tests in the high-cycle fatigue region with a stress asymmetry ratios of R = −1 and R = 0.1. The resulting fracture surfaces are analyzed through light optical microscopy (LOM) and scanning electron microscopy (SEM). VPDC increased the number of cycles to fracture and decreased the scatter at the given load levels compared to conventional HPDC casting. Moreover, VPDC significantly decreased the porosity size and volume, and the occurrence of oxide flakes is also decreased, resulting in the improvement in the number of cycle to failure.

Funder

Budapest University of Technology and Economics

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3