Optimizing Interfaces in Laser-Brazed Ceramic-Stainless Steel Joints for Hydrothermal Sensors through Finite-Element Modeling

Author:

Feng Jian,Herrmann Marion,Reinecke Anne-Maria,Hurtado Antonio

Abstract

AbstractThe development of reliable joining techniques for ceramics and metals is crucial for energy applications, such as fuel cells, nuclear reactors, and high-temperature sensors, most especially for the sealing of hydrothermal sensors to study multiphase flows. However, during one-step active laser brazing it is a serious problem that a high thermal stress concentration can occur at the joint interfaces or on the ceramic side of the joint due to mismatches between the CTEs (coefficients of thermal expansion) and/or elastic constants. The uncontrolled thermal residual stress can lead to cracks and defects in the brazement. In the present work, an elastoplastic finite element method/numerical model was formulated to study the thermal residual stresses developed in the brazement between ceramics and austenitic stainless steel during cooling in active laser brazing. Calculations and comparison experiments were conducted to validate the simulated stress distribution in un-patterned ceramics. Stress analyses were conducted for planar and cylindrical specimen geometries (lab joints) relevant for miniaturized energy sensors. Laser interface patterning was employed to create micro-scale features on ceramic interfaces that reduce thermal stress concentrations. The optimization of the interface designing parameters including hatch size, structure width, pattern depth and metal/ceramic thickness ratio was performed using the Taguchi method with orthogonal arrays. The study suggests that laser interface structuring can modify thermal residual stresses in ceramic-to-metal brazements, thereby increasing the reliability of active brazing joints.

Funder

Technische Universität Dresden

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Toughening Ceramic Joints through Strategic Fracture Path Control;Advanced Materials Technologies;2024-08-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3