Interface Characterization of Ni/Al Bimetallic Explosively Welded Plate Manufactured with Application of Exceptionally High Detonation Speed

Author:

Kwiecien I.ORCID,Bobrowski P.,Janusz-Skuza M.,Wierzbicka-Miernik A.,Tarasek A.,Szulc Z.,Wojewoda-Budka J.

Abstract

AbstractThe investigation is dedicated to the detailed microstructure characterization of explosively welded clads, in which, exceptionally and for cognitive purposes, a very high detonation speed of about 2800 m/s was used to manufacture bimetallic aluminum-nickel plates. The study involves detailed microstructural characteristics of the bonded zone at micro and nano level, especially focused on the expanded melted regions consisted mostly of Al3Ni, Al3Ni2 and AlNi phases. In situ heating experiment in transmission electron microscope allowed observing microstructure transformation revealing that additionally present metastable Al9Ni2 phase was transformed to Al3Ni and Al3Ni2. Microhardness measurements across the welded zone showed the increase of the microhardness of nickel alloy plate from 153 up to 170 HV when approaching to the Ni201/A1050 interface, while the value for aluminum plate was of 45 HV. Within the melted zones the microhardness was found to be 135 HV and it enormously increased to 850 HV after annealing of the sample at 500 °C. This change was due to the transformation of the interface region from the waves with the melted zones into the continuous layers of two intermetallic phases: Al3Ni and Al3Ni2. The second phase grew at the expense of the Al3Ni.

Funder

Aleksander Krupkowski Institute of Metallurgy and Materials Science PAS

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3