Qualification of Austenitic Stainless Steels for the Development of Load-Sensitive Material Sensors

Author:

Gansel René,Quanz Markus,Lohrengel Armin,Maier Hans Jürgen,Barton Sebastian

Abstract

AbstractTo detect mechanical overloads on the component directly in operation, a metastable material can be used as a load-sensitive sensor when combined with an eddy current testing system. In order to find a suitable metastable sensor material that exhibits microstructural changes at an early stage before fatigue failure, quasi-static tensile tests and cyclic rotating bending tests were carried out with the austenitic stainless steels 1.4301 (2 batches), 1.4305, 1.4541 and 1.4550. For the detection of microstructural changes, electromagnetic testing was used in-situ in the tensile test and ex-situ between the rotating bending test after a pre-defined number of cycles. The investigated materials 1.4301 batch2 and 1.4550 showed the largest signal changes and the lowest austenite stability both in the tensile test and under cyclic bending load. Due to the better mechanical properties, 1.4301 batch2 should be preferred. The order of the austenitic stainless steels tested was similar in terms of transformation behavior in both tests. Thus, the tensile test combined with in-situ electromagnetic testing appears to have potential as a suitable benchmark test for austenite stability. With regard to the cyclic bending stress, an overload of the specimens could be detected for the materials 1.4301 batch2, 1.4305, 1.4541 and for the 1.4550 on the basis of a significant amplitude change. At low bending stresses, uncritical for structural integrity, no increase in amplitude was measured. The results have shown that an early detection of overloads is possible with several materials, however, the potential for detecting overloads varies between materials and also between individual batches. In addition, it has been observed that as the bending stress increases, the gradient of the change in amplitude over the number of cycles increases as well. Thus, with a known number of cycles, it could be possible to classify the previous load spectrum based on the difference in amplitude between two measurements.

Funder

Gottfried Wilhelm Leibniz Universität Hannover

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3