Progressive Induction Hardening: Measurement and Alteration of Residual Stresses

Author:

Holmberg JonasORCID,Wendel Johan,Stormvinter Albin

Abstract

AbstractProgressive induction hardening is an in-line steel heat treatment method commonly used to surface harden powertrain components. It produces a martensitic case layer with a sharp transition zone to the base material. This rapid process will induce large residual stresses, where a compressive state in the case layer will shift to a tensile state in the transition zone. For fatigue performance, it is important to quantify the magnitude and distribution of these stresses, and moreover how they depend on material and processing parameters. In this work, x-ray diffraction in combination with a layer removal method is used for efficient and robust quantification of the subsurface stress state, which combines electropolishing with either turning or milling. Characterization is done on C45E steel samples that were progressively induction hardened using either a fast or slow (27.5 or 5 mm/s, respectively) scanning speed. The results show that although the hardening procedures will meet arbitrary requirements on surface hardness, case depth and microstructure, the subsurface tensile stress peak magnitude is doubled when using a fast scanning speed. However, the near-surface compressive residual stresses are comparable. In addition, the subsurface tensile residual stress peak is compared with the on-surface tensile stresses in the fade-out zone.

Funder

RISE Research Institutes of Sweden

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3