Microstructure and Mechanical Properties of Ti-6Al-4V Manufactured by Selective Laser Melting after Stress Relieving, Hot Isostatic Pressing Treatment, and Post-Heat Treatment

Author:

Eshawish Naeem,Malinov Savko,Sha Wei,Walls Patrick

Abstract

AbstractAdditive manufacturing (AM) is defined as a technology performed for tooling applications. It is used for manufacturing tools that have complex shapes and figures. In this study, an extensively applied Ti-6Al-4V alloy was made using the selective laser melting method. Post-production heat treatments were applied to decrease thermal stresses and to enhance the mechanical properties and the microstructure. The study investigates the fatigue mechanical properties, microstructure, hardness, and porosity of the AM Ti-6Al-4V after stress relieving (SR) and after SR followed by hot isostatic pressing (HIP). The samples’ upper and lower parts were independently examined to determine the effects of thermal conditions and the heat treatment of the microstructure. The microstructures were examined through optical microscopy, scanning electron microscopy and x-ray diffraction methods. The mechanical properties were investigated through microhardness testing, alongside assessment by fatigue testing at room temperature. The findings demonstrated that the microstructure after SR at 704 °C for 2 h is 100% fine martensitic α'-Ti, with a microhardness value of 408 HV. Air and furnace cooled samples have a more homogenous structure and are characterised by mixture (α + β) with microhardness values of 382 and 356 HV, respectively. After HIP at 920 °C and 100 MPa for 2 h was applied, the martensite was converted into a lamellar (α + β) microstructure, whereby the α phase is presented as fine needles situated among the β ridges in the microstructure, with the existence of the prior β grain boundary.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3