Microstructure, Mechanical Properties, and Martensitic Transformation in NiTi Shape Memory Alloy Fabricated Using Electron Beam Additive Manufacturing Technique

Author:

Dutkiewicz Jan,Rogal Łukasz,Kalita Damian,Kawałko Jakub,Węglowski Marek Stanisław,Kwieciński Krzysztof,Śliwiński Piotr,Danielewski Hubert,Antoszewski Bogdan,Cesari Eduard

Abstract

AbstractThe electron beam additive manufacturing (EBAM) method was applied in order to fabricate rectangular-shaped NiTi component. The process was performed using an electron beam welding system using wire feeder inside the vacuum chamber. NiTi wire containing 50.97 at.% Ni and showing martensitic transformation near room temperature was used. It allowed to obtain a good quality material consisting of columnar grains elongated into the built direction growing directly from the NiTi substrate, which is related to the epitaxial grain growth mechanism. As manufactured material showed martensitic and reverse transformations diffused over the temperature range from −10 to 44 °C, the applied aging at 500° C moved the transformation to higher temperatures and transformation peaks became sharper. The highest recoverable strain of about 3.5% was obtained in the as-deposited sample deformed along the deposition direction. In the case of deformation of the alloy aged at 500 °C for 2h, the formation of martensite occurs at significantly lower stress; however, at about 2.5% the stress begins to increase gradually and only a small shape recovery was observed due to a higher martensitic transformation temperature. In situ SEM tensile deformation in the direction perpendicular to deposition direction showed that the martensite began to appear at the surface of the sample and at the grain boundaries due to heterogeneous nucleation. In situ studies allowed to determine the following crystallographic relationships between B2 and B19’ martensite: (100)B2||(100)B19’ and (100) B2 || (011)B19’; (011)B2|| (001)B19’ and $${(011)}_{\mathrm{B}2}||{\left(11\bar{1 }\right)}_{\mathrm{B}1{9}^{\mathrm{^{\prime}}}}$$ ( 011 ) B 2 | | 11 1 ¯ B 1 9 . Samples aged at 500 °C exhibited fully austenitic microstructure; however, with increasing degree of deformation, the formation of martensite was observed. The majority of needles were tilted about 45° with respect to the tensile direction, and the presence of type I (11 $$\bar{1 }$$ 1 ¯ ) invariant twin boundaries was observed at higher degrees of deformation.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3