Role of Superficial Defects and Machining Depth in Tensile Properties of Electron Beam Melting (EBM) Made Inconel 718

Author:

Zhao Xiaoyu,Rashid Amir,Strondl Annika,Hulme-Smith Christopher,Stenberg Niclas,Dadbakhsh Sasan

Abstract

AbstractSince there is no report on the influence of machining depth on electron beam melting (EBM) parts, this paper investigated the role of superficial defects and machining depth in the performance of EBM made Inconel 718 (IN718) samples. Therefore, as-built EBM samples were analyzed against the shallow-machined (i.e., only removal of outer surfaces) and deep-machined (i.e., deep surface removal into the material) parts. It was shown that both as-built and shallow-machined samples had a drastically lower yield strength (970 ± 50 MPa), ultimate tensile stress (1200 ± 40 MPa), and ductility (28 ± 2%) compared to the deep-machined samples. This was since premature failure occurred due to various superficial defects. The superficial defects appeared in two levels, as (1) notches and pores on the surface and (2) irregular pores and cracks within the subsurface. Since the latter occurred down to 2 mm underneath the surface, shallow machining only exposed the subsurface defects to outer surfaces. Thus, the shallow-machined parts achieved only 68% and 8% of UTS and elongation of the deep-machined parts, respectively. This low performance occurred to be comparable to the as-built parts, which failed prematurely due to the high fraction surface voids and notches as well as the subsurface defects.

Funder

Royal Institute of Technology

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3