Manufacturing of High Purity Cr2AlC MAX Phase Material and Its Characterization

Author:

Desai VyomORCID,Shrivastava Aroh,Zala Arunsinh B.,Parekh Tejas,Gupta Surojit,Jamnapara N. I.

Abstract

AbstractPresent study discusses about a technique for producing high-purity Cr2AlC MAX phase materials and gaining insight into their thermal behavior for high-temperature applications. The research conducted involved synthesizing a pure layered ternary carbide Cr2AlC MAX phase material by mixing powders of Chromium, Aluminum, and Carbon and then subjecting them to two-step pressureless sintering process in argon atmosphere. First step involves the annealing of ball-milled mixture at 750 °C for 2 h followed by the second step in which the annealed mixture is subjected to heat-treatment at 1350 °C for 2 h. Analysis using XRD and Raman techniques revealed that the synthesized product consists of Cr2AlC phase, without any impurities. SEM studies confirmed that the Cr2AlC had a layered topography, while EPMA analysis indicated that the atomic percentage of Cr, Al, and C was consistent with the XRD phase analysis. XPS investigations confirmed the presence of Cr-C bonds representing Mn+1Xn of the MAX phase material. TG-DSC results showed an approximately 2% increase in weight. The Cr2AlC phase exhibited an endothermic pattern below 725 °C, an exothermic pattern above it, and did not decompose up to 1400 °C in vacuum environment. High-temperature XRD analysis at various temperatures also confirmed no formation of Al2O3 or CrO impurity compounds.

Funder

Institute for Plasma Research & ITER-India, Institute for Plasma Research

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3