Influence of the Evolution of 9CrMoCoB Steel Precipitates on the Microstructure and Mechanical Properties during High-Temperature Aging

Author:

Ma Yulin,Kuang Chengyang,Cheng Jun,Yang Changdi

Abstract

AbstractIn this study, the short-term aging was carried out to reveal the evolution of precipitates and mechanical properties of heat resistant 9CrMoCoB steel during the early creep, replacing the conventional creeping. The tempered martensite lath structure (TMLS) and precipitates were observed in the as-aged 9CrMoCoB steel. TMLS in the matrix underwent a transition to the polygonal ferrite after aging only for 300 h. In comparison, the mean diameter of the precipitates increased from 183 to 267 nm after aging at 650 °C for 300 h. Also, the mean diameter of the precipitates increased from 183 to 302 nm at 700 °C. The room-temperature and high-temperature strength of 9CrMoCoB steel decreased after high-temperature aging, which may be mainly due to precipitates coarsening. Many M23C6 phases precipitate in the prior austenite grain boundary (PAGB) and lath boundary. After aging 100 h, TMLS transformed into polygonal ferrite, and the size of the precipitate at the subgrain boundary was about 100 nm, while after 300 h of high-temperature aging, large precipitates appear (400 nm) in the matrix. After 200 h of high-temperature aging, the obvious growth of precipitates on the PAGB and lath boundary weakens the pinning effect on the PAGB and martensite lath boundary and accelerates the transformation of microstructure and mechanical properties.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3