Author:
Tangestani Reza,Farrahi Gholam Hossein,Shishegar Mehdi,Aghchehkandi Bahareh Pourbagher,Ganguly Supriyo,Mehmanparast Ali
Abstract
AbstractResidual stresses are inherent in parts manufactured using the wire + arc additive manufacturing (WAAM) technique, resulting in unpredictable mechanical response and structural integrity (Colegrove et al.: J Mater Process Technol 213:1782-1791, 2013). An effective post-processing technique, which enhances the mechanical properties of WAAM parts, is rolling. This study investigates the vertical and pinch rolling effects on residual stress distribution in WAAM components. Initially, a WAAM model was created using a thermo-mechanical finite element modelling approach and validated against the experimental results. Subsequent to the validation of the model, the effect of the main parameters involved in vertical and pinch rolling processes, namely the rolling depth, the curvature depth of the roller, the roller shape, transversal displacement, rolling direction and roller thickness, was investigated. The results from this study show that the residual stress profile in the vertical rolling process applied on a WAAM wall can be enhanced by increasing the rolling depth and curvature depth of the roller. Moreover, it is shown that in the pinch rolling process, the residual stress profile is sensitive to the rolling direction and more compressive residual stresses can be induced into the wall by applying fewer passes of rolling using thicker rollers.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献