Comparison of Mechanical Properties of Bulk NiAl-Re-Al2O3 Intermetallic Material Manufactured by Laser Powder Bed Fusion and Hot Pressing

Author:

Bochenek KamilORCID,Arneitz Siegfried,Sommitsch Christof,Basista Michał

Abstract

AbstractThe low fracture toughness of NiAl at room temperature is one of the critical issues limiting its application in aircraft engines. It has been previously shown that a small addition of rhenium and alumina significantly improves the fracture toughness of hot-pressed NiAl. In this work, NiAl with an admixture of rhenium and alumina was produced by laser powder bed fusion additive technology (LPBF). The purpose was to compare the fracture toughness, bending strength, and microhardness of the NiAl-Re-Al2O3 material produced by LPBF and hot pressing (HP). Our results show that the LPBF material has lower fracture toughness and bending strength compared to its hot-pressed equivalent. Microcracks generated by thermal stresses during the LPBF process were the primary cause of this behavior. To improve the LPBF material, a post-processing by HP was applied. However, the fracture toughness of the (LPBF + HP) material remained at 50% of the KIC of the HP material. This study supports hot pressing as a suitable processing method for NiAl with rhenium and alumina additions. However, a hybrid approach combining LPBF and HP proved to be highly effective on the raw NiAl powder, resulting in superior fracture toughness of the final material compared to that consolidated by singular HP.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3