Non-destructive Evaluation of Workpiece Properties along the Hybrid Bearing Bushing Process Chain

Author:

Fricke Lara VivianORCID,Thürer Susanne Elisabeth,Kahra Christoph,Bährisch Susanne,Herbst Sebastian,Nürnberger Florian,Behrens Bernd-Arno,Maier Hans Jürgen,Klose Christian,Barton Sebastian

Abstract

AbstractTo combine the advantages of two materials, hybrid bulk metal workpieces are attractive for subsequent processes such as metal forming. However, hybrid materials rely on the initial bond strength for the effective transfer of applied loads. Thus, a non-destructive evaluation of the bonding along the production process chain is of high interest. To evaluate to what extent non-destructive testing can be employed to monitor the bonding quality between the joining partners steel and aluminum and to characterize the age hardening condition of the aluminum component, ultrasonic testing and electrical conductivity measurements were applied. It was found that a lateral angular co-extrusion process can create homogeneous bonding although the electrical conductivity of the aluminum is altered during processing. A previous bonding before the subsequent die forging process leads to a sufficient bonding in areas with little deformation and is therefore, advantageous compared to unjoined semi-finished products, which do not form a bonding if the deformation ratio is too small. An influence of the subsequent heat treatment on the bonding is not visible in the ultrasonic testing signals though a homogenized electrical conductivity can be detected, which indicates uniform artificial aging conditions of the aluminum alloy

Funder

Gottfried Wilhelm Leibniz Universität Hannover

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3