Metagenomic insights into the effects of submerged plants on functional potential of microbial communities in wetland sediments

Author:

Wang Binhao,Zheng Xiafei,Zhang Hangjun,Yu Xiaoli,Lian Yingli,Yang Xueqin,Yu Huang,Hu Ruiwen,He Zhili,Xiao Fanshu,Yan Qingyun

Abstract

AbstractSubmerged plants in wetlands play important roles as ecosystem engineers to improve self-purification and promote elemental cycling. However, their effects on the functional capacity of microbial communities in wetland sediments remain poorly understood. Here, we provide detailed metagenomic insights into the biogeochemical potential of microbial communities in wetland sediments with and without submerged plants (i.e., Vallisneria natans). A large number of functional genes involved in carbon (C), nitrogen (N) and sulfur (S) cycling were detected in the wetland sediments. However, most functional genes showed higher abundance in sediments with submerged plants than in those without plants. Based on the comparison of annotated functional genes in the N and S cycling databases (i.e., NCycDB and SCycDB), we found that genes involved in nitrogen fixation (e.g., nifD/H/K/W), assimilatory nitrate reduction (e.g., nasA and nirA), denitrification (e.g., nirK/S and nosZ), assimilatory sulfate reduction (e.g., cysD/H/J/N/Q and sir), and sulfur oxidation (e.g., glpE, soeA, sqr and sseA) were significantly higher (corrected p < 0.05) in vegetated vs. unvegetated sediments. This could be mainly driven by environmental factors including total phosphorus, total nitrogen, and C:N ratio. The binning of metagenomes further revealed that some archaeal taxa could have the potential of methane metabolism including hydrogenotrophic, acetoclastic, and methylotrophic methanogenesis, which are crucial to the wetland methane budget and carbon cycling. This study opens a new avenue for linking submerged plants with microbial functions, and has further implications for understanding global carbon, nitrogen and sulfur cycling in wetland ecosystems.

Publisher

Springer Science and Business Media LLC

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3