Interpolation and non-dilatable families of $$\mathcal {C}_{0}$$-semigroups

Author:

Dahya RajORCID

Abstract

AbstractWe generalise a technique of Bhat and Skeide (J Funct Anal 269:1539–1562, 2015) to interpolate commuting families $$\{S_{i}\}_{i \in \mathcal {I}}$$ { S i } i I of contractions on a Hilbert space $$\mathcal {H}$$ H , to commuting families $$\{T_{i}\}_{i \in \mathcal {I}}$$ { T i } i I of contractive $$\mathcal {C}_{0}$$ C 0 -semigroups on $$L^{2}(\prod _{i \in \mathcal {I}}\mathbb {T}) \otimes \mathcal {H}$$ L 2 ( i I T ) H . As an excursus, we provide applications of the interpolations to time-discretisation and the embedding problem. Applied to Parrott’s construction (1970), we then demonstrate for $$d \in \mathbb {N}$$ d N with $$d \ge 3$$ d 3 the existence of commuting families $$\{T_{i}\}_{i=1}^{d}$$ { T i } i = 1 d of contractive $$\mathcal {C}_{0}$$ C 0 -semigroups which admit no simultaneous unitary dilation. As an application of these counter-examples, we obtain the residuality wrt.the topology of uniform $$\textsc {wot}$$ W O T -convergence on compact subsets of $$\mathbb {R}_{\ge 0}^{d}$$ R 0 d of non-unitarily dilatable and non-unitarily approximable d-parameter contractive $$\mathcal {C}_{0}$$ C 0 -semigroups on separable infinite-dimensional Hilbert spaces for each $$d \ge 3$$ d 3 . Similar results are also developed for d-tuples of commuting contractions. And by building on the counter-examples of Varopoulos-Kaijser (1973–74), a 0-1-result is obtained for the von Neumann inequality. Finally, we discuss applications to rigidity as well as the embedding problem, viz. that ‘typical’ pairs of commuting operators can be simultaneously embedded into commuting pairs of $$\mathcal {C}_{0}$$ C 0 -semigroups, which extends results of Eisner (2009–2010).

Funder

Universität Leipzig

Publisher

Springer Science and Business Media LLC

Reference47 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3