Rigidity of Volterra-type integral operators on Hardy spaces of the unit ball

Author:

Miihkinen Santeri,Pau Jordi,Perälä AnttiORCID,Wang Maofa

Abstract

AbstractWe establish that the Volterra-type integral operator $$J_b$$ J b on the Hardy spaces $$H^p$$ H p of the unit ball $${\mathbb {B}}^n$$ B n exhibits a rather strong rigid behavior. More precisely, we show that the compactness, strict singularity and $$\ell ^p$$ p -singularity of $$J_b$$ J b are equivalent on $$H^p$$ H p for any $$1 \le p < \infty $$ 1 p < . Moreover, we show that the operator $$J_b$$ J b acting on $$H^p$$ H p cannot fix an isomorphic copy of $$\ell ^2$$ 2 when $$p \ne 2.$$ p 2 .

Funder

National Natural Science Foundation of China

Academy of Finland

Engineering and Physical Sciences Research Council

Ministerio de Educación y Ciencia

Generalitat de Catalunya

Spanish Ministry of Economy and Competitiveness

Publisher

Springer Science and Business Media LLC

Reference16 articles.

1. Ahern, P., Bruna, J.: Maximal and area integral characterizations of Hardy–Sobolev spaces in the unit ball of $${{\mathbb{C} }^n}$$. Rev. Math. Iberoam. 4, 123–153 (1988)

2. Aleman, A.: A class of integral operators on spaces of analytic functions, Topics in Complex Analysis and Operator Theory. In: Proc. Winter School (Antequera, 2006), pp. 3–30

3. Aleman, A., Cima, J.: An integral operator on $$H^p$$ and Hardy’s inequality. J. Anal. Math. 85, 157–176 (2001)

4. Aleman, A., Siskakis, A.: An integral operator on $$H^p$$. Complex Var. Theory Appl. 28(2), 149–158 (1995)

5. Hu, Z.: Extended Cesàro operators on mixed norm spaces. Proc. Am. Math. Soc. 131, 2171–2179 (2003)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3