Convergence and high order of approximation by Steklov sampling operators

Author:

Costarelli DaniloORCID

Abstract

AbstractIn this paper we introduce a new class of sampling-type operators, named Steklov sampling operators. The idea is to consider a sampling series based on a kernel function that is a discrete approximate identity, and which constitutes a reconstruction process of a given signal f, based on a family of sample values which are Steklov integrals of order r evaluated at the nodes k/w, $$k \in {\mathbb {Z}}$$ k Z , $$w>0$$ w > 0 . The convergence properties of the introduced sampling operators in continuous functions spaces and in the $$L^p$$ L p -setting have been studied. Moreover, the main properties of the Steklov-type functions have been exploited in order to establish results concerning the high order of approximation. Such results have been obtained in a quantitative version thanks to the use of the well-known modulus of smoothness of the approximated functions, and assuming suitable Strang-Fix type conditions, which are very typical assumptions in applications involving Fourier and Harmonic analysis. Concerning the quantitative estimates, we proposed two different approaches; the first one holds in the case of Steklov sampling operators defined with kernels with compact support, its proof is substantially based on the application of the generalized Minkowski inequality, and it is valid with respect to the p-norm, with $$1 \le p \le +\infty $$ 1 p + . In the second case, the restriction on the support of the kernel is removed and the corresponding estimates are valid only for $$1 < p\le +\infty $$ 1 < p + . Here, the key point of the proof is the application of the well-known Hardy–Littlewood maximal inequality. Finally, a deep comparison between the proposed Steklov sampling series and the already existing sampling-type operators has been given, in order to show the effectiveness of the proposed constructive method of approximation. Examples of kernel functions satisfying the required assumptions have been provided.

Funder

Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni

European Union - NextGenerationEU under the Italian Ministry of University and Research

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3