Maximum likelihood estimation for left-truncated log-logistic distributions with a given truncation point

Author:

Kreer Markus,Kızılersü AyşeORCID,Guscott Jake,Schmitz Lukas Christopher,Thomas Anthony W.

Abstract

AbstractFor a sample $$X_1, X_2,\ldots X_N$$ X 1 , X 2 , X N of independent identically distributed copies of a log-logistically distributed random variable X the maximum likelihood estimation is analysed in detail if a left-truncation point $$x_L>0$$ x L > 0 is introduced. Due to scaling properties it is sufficient to investigate the case $$x_L=1$$ x L = 1 . Here the corresponding maximum likelihood equations for a normalised sample (i.e. a sample divided by $$x_L$$ x L ) do not always possess a solution. A simple criterion guarantees the existence of a solution: Let $$\mathbb {E}(\cdot )$$ E ( · ) denote the expectation induced by the normalised sample and denote by $$\beta _0=\mathbb {E}(\ln {X})^{-1}$$ β 0 = E ( ln X ) - 1 , the inverse value of expectation of the logarithm of the sampled random variable X (which is greater than $$x_L=1$$ x L = 1 ). If this value $$\beta _0$$ β 0 is bigger than a certain positive number $$\beta _C$$ β C then a solution of the maximum likelihood equation exists. Here the number $$\beta _C$$ β C is the unique solution of a moment equation,$$\mathbb {E}(X^{-\beta _C})=\frac{1}{2}$$ E ( X - β C ) = 1 2 . In the case of existence a profile likelihood function can be constructed and the optimisation problem is reduced to one dimension leading to a robust numerical algorithm. When the maximum likelihood equations do not admit a solution for certain data samples, it is shown that the Pareto distribution is the $$L^1$$ L 1 -limit of the degenerated left-truncated log-logistic distribution, where $$L^1(\mathbb {R}^+)$$ L 1 ( R + ) is the usual Banach space of functions whose absolute value is Lebesgue-integrable. A large sample analysis showing consistency and asymptotic normality complements our analysis. Finally, two applications to real world data are presented.

Funder

The University of Adelaide

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3