Improved Breitung and Roling estimator for mixed-frequency models with application to forecasting inflation rates

Author:

Omer Talha,Månsson Kristofer,Sjölander Pär,Kibria B. M. Golam

Abstract

AbstractInstead of applying the commonly used parametric Almon or Beta lag distribution of MIDAS, Breitung and Roling (J Forecast 34:588–603, 2015) suggested a nonparametric smoothed least-squares shrinkage estimator (henceforth $${SLS}_{1}$$ SLS 1 ) for estimating mixed-frequency models. This $${SLS}_{1}$$ SLS 1 approach ensures a flexible smooth trending lag distribution. However, even if the biasing parameter in $${SLS}_{1}$$ SLS 1 solves the overparameterization problem, the cost is a decreased goodness-of-fit. Therefore, we suggest a modification of this shrinkage regression into a two-parameter smoothed least-squares estimator ($${SLS}_{2}$$ SLS 2 ). This estimator solves the overparameterization problem, and it has superior properties since it ensures that the orthogonality assumption between residuals and the predicted dependent variable holds, which leads to an increased goodness-of-fit. Our theoretical comparisons, supported by simulations, demonstrate that the increase in goodness-of-fit of the proposed two-parameter estimator also leads to a decrease in the mean square error of $${SLS}_{2},$$ SLS 2 , compared to that of $${SLS}_{1}$$ SLS 1 . Empirical results, where the inflation rate is forecasted based on the oil returns, demonstrate that our proposed $${SLS}_{2}$$ SLS 2 estimator for mixed-frequency models provides better estimates in terms of decreased MSE and improved R2, which in turn leads to better forecasts.

Funder

Jönköping University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3