Abstract
AbstractAn alternative look at the linear regression model is taken by proposing an original treatment of a full column rank model (design) matrix. In such a situation, the Moore–Penrose inverse of the matrix can be obtained by utilizing a particular formula which is applicable solely when a matrix to be inverted can be columnwise partitioned into two matrices of disjoint ranges. It turns out that this approach, besides simplifying derivations, provides a novel insight into some of the notions involved in the model and reduces computational costs needed to obtain sought estimators. The paper contains also a numerical example based on astronomical observations of the localization of Polaris, demonstrating usefulness of the proposed approach.
Publisher
Springer Science and Business Media LLC
Subject
Statistics, Probability and Uncertainty,Statistics and Probability
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献