Abstract
AbstractThe present paper discusses drawbacks and limitations of likelihood-based inference in sequential clinical trials for treatment comparisons managed via Response-Adaptive Randomization. Taking into account the most common statistical models for the primary outcome—namely binary, Poisson, exponential and normal data—we derive the conditions under which (i) the classical confidence intervals degenerate and (ii) the Wald test becomes inconsistent and strongly affected by the nuisance parameters, also displaying a non monotonic power. To overcome these drawbacks, we provide a very simple solution that could preserve the fundamental properties of likelihood-based inference. Several illustrative examples and simulation studies are presented in order to confirm the relevance of our results and provide some practical recommendations.
Funder
Alma Mater Studiorum - Università di Bologna
Publisher
Springer Science and Business Media LLC
Subject
Statistics, Probability and Uncertainty,Statistics and Probability
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献